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Real turbulent flows are difficult to classify as either spatially homogeneous or
isotropic. Nonetheless these idealizations allow the identification of certain universal
features associated with the small-scale motions almost invariably observed in a
variety of different conditions. The single most significant aspect is a flux of energy
through the spectrum of inertial scales related to the phenomenology commonly
referred to as the Richardson cascade. Inhomogeneity, inherently present in near-wall
turbulence, generates additional energy fluxes of a different nature, corresponding to
the spatial redistribution of turbulent kinetic energy. Traditionally the spatial flux is
associated with a single-point observable, namely the turbulent kinetic energy density.
The flux through the scales is instead classically related to two-point statistics, given
in terms of an energy spectrum or, equivalently, in terms of the second-order moment
of the velocity increments. In the present paper, starting from a suitably generalized
form of the classical Kolmogorov equation, a scale-by-scale balance for the turbulent
fluctuations is evaluated by examining in detail how the energy associated with a
specific scale of motion – hereafter called the scale energy – is transferred through
the spectrum of scales and, simultaneously, how the same scale of motion exchanges
energy with a properly defined spatial flux. The analysis is applied to a data set taken
from a direct numerical simulation (DNS) of a low-Reynolds-number turbulent
channel flow. The detailed scale-by-scale balance is applied to the different regions
of the flow in the various ranges of scales, to understand how – i.e. through which
mechanisms, at which scales and in which regions of the flow domain – turbulent
fluctuations are generated and sustained. A complete and formally precise description
of the dynamics of turbulence in the different regions of the channel flow is presented,
providing rigorous support for previously proposed conceptual models.

1. Introduction
Wall-bounded turbulence is characterized by several processes which may be

thought of as belonging to two different classes: phenomena which occur in physical
space and phenomena which take place in the space of scales. A typical example of
the former is the spatial flux of turbulent kinetic energy. A concept related to the
latter is the energy transfer among scales due to the coupling between modes, or, in
more general terms, between eddies of different size.

Wall-bounded flows present well-characterized regions where the different
contributions to the balance of turbulent kinetic energy, namely viscous, inertial
and production terms, play different roles. In particular, a turbulent channel flow
is classically sub-divided into a viscosity-dominated sublayer, a buffer layer where



192 N. Marati, C. M. Casciola and R. Piva

production of turbulent kinetic energy and turbulence intensity is the largest, a
logarithmic layer, with production in equilibrium with dissipation, and finally a
core region where turbulence is energized by the spatial flux of turbulent kinetic
energy generated within the buffer layer, see the monograph by Townsend (1956),
the comprehensive review in Pope (2000) and references cited therein. This classical
picture, common to different wall-bounded flows (see e.g. the experimental analysis
by Eckelmann (1974) for the channel flow and by Klebanoff (1954) for the boundary
layer) has been made even clearer in recent times through the analysis of the data
sets generated by highly accurate numerical simulations. Direct numerical simulations
(DNS, see e.g. Kim, Moin & Moser 1987; Moser, Kim & Mansour 1999) show the role
of inhomogeneity in connection with the self-sustaining capability of wall-bounded
turbulence. In this context, DNS has been used to construct so-called ‘unphysical
experiments’, Jimenez & Pinelli (1999), with the aim of addressing specific mechanisms
of turbulence regeneration (see e.g. Hamilton, Kim & Waleffe 1995). Globally, these
results, obtained by addressing the flow dynamics in physical space, make clear that
production by mean shear, flux of turbulent kinetic energy and dissipation are the
principal ingredients in understanding the dynamics of wall-bounded flows.

The description in physical space alone is however insufficient to capture the real
dynamics of wall-bounded turbulence, and traditionally it is complemented by a
parallel view based on the decomposition of the field into a hierarchy of scales of
motion. In fact, according to the classical prediction of Kolmogorov (1941), every
turbulent flow at sufficiently large Reynolds number is expected to approach a
universal state at small scales, see also Monin & Yaglom (1975). There is much
experimental evidence that this is true in the log-layer, where the longitudinal
energy spectrum is found to scale for a significant range like the power −5/3 of
the wavenumber, k−5/3, see e.g. the experiments of Saddoughi & Veeravalli (1994)
in a large-Reynolds-number boundary layer and the compilation of a huge amount
of data of different origin reported therein. The review paper by Gad-el-Hak &
Bandyopadhyay (1994) is also worth mentioning in this context for the assessment of
finite Reynolds number effects. Actually, the longitudinal spectrum in the log-layer
exhibits several distinct ranges: apart from a dissipative range and a classical inertial
range, at larger separations – namely for wavenumbers smaller than the reciprocal of
the distance from the wall – a distinct range with scaling behaviour proportional to k−1

emerges as discussed in the paper by Perry, Henbest & Chong (1986); see also Nikora
(1999) for theoretical arguments on the subject. In this so-called production range the
turbulent fluctuations are generated by the direct action of the local shear. The entire
turbulence statistics is strongly affected by the shear and the picture is substantially
different from the classical description in terms of the Richardson cascade, see e.g.
Frisch (1995) for a general discussion of the energy cascade issue in homogeneous
isotropic turbulence, to the extent that even the level of intermittency is enhanced
as shown by the scaling properties of the structure functions of the turbulent field,
see the analysis of DNS data in Toschi et al. (1999) and Benzi et al. (1999) and the
experimental results of Ruiz-Chavarria et al. (2000) and Jacob, Olivieri & Casciola
(2002).

The two complementary approaches just outlined above are in a sense mutually
exclusive, since addressing one precludes the other automatically. In this respect, a
more general approach is clearly necessary to describe the scale-dependent dynamics in
the presence of the spatial fluxes induced by the inhomogeneity. Recently an equation
with these characteristics has been derived by Hill (2002) as an evolution equation for
the second-order moment of the velocity increment between two locations, namely
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the second-order structure function, as a function of separation and position of
the mid-point. The procedure to derive the equation is discussed in detail and is
sufficiently general to allow its extension to higher orders as discussed by Hill &
Borotav (2001). By a different approach these results confirmed those derived from
the evolution equation for the generating function of the probability distribution
of the velocity increments by Yakhot (2001). He showed how the hierarchy of
equations for velocity structure functions is not closed due to terms arising from
the statistics of the dissipation field and to pressure–velocity correlations. Suitable
closures are introduced as a necessary step to reach quantitative predictions on the
scaling exponents of the structure functions. The subject has been re-considered by
Kurien & Sreenivasan (2001) who gave a further contribution by checking both
assumptions and predictions of the theory against experimental data.

In this context, the focus of the present paper is on the equation for the second-
order structure function. Interpreted in terms of fluctuation velocity, this generalized
Kolmogorov equation reduces to the classical form when homogeneous isotropic
conditions are approached, while under uniform shear it reproduces the equation
used for the scale-by-scale budget in homogeneous shear flow, Casciola et al. (2003)
(see also Hinze 1959 and Oberlack 2001 for the derivation of closely related equations).
By this kind of approach it has recently been shown that the production range and
classical inertial range of shear-dominated flows possess several universal features. For
instance, the scaling laws for the longitudinal velocity increments in the homogeneous
shear flow, Gualtieri et al. (2002), are reproduced with exactly the same characteristics
in a zero-pressure-gradient boundary layer, Casciola et al. (2002).

Up to now the great potential of a general equation for the second-order structure
function has never been fully exploited in an analysis of inhomogeneous turbulent
fields. An exception is the paper of Danaila et al. (2000) where hot-wire anemometry
data taken in the core of a turbulent channel flow are analysed with the main
motivation of providing improved estimates of the dissipation rate in slightly
inhomogeneous conditions, see also Lindborg (1999) on a related topic. From the
experimental point of view, however, a number of assumptions are necessary to
evaluate the different terms of the equation from hot-wire measurements.

In the present paper the generalized Kolmogorov equation is used in its full form
to reveal the dynamics of the turbulent fluctuations at different scales in the different
regions of a turbulent channel flow described through a DNS at a friction Reynolds
number of 180. The main purpose is to assess the role of two fluxes of scale energy
of essentially different nature: one, taking place in physical space, is generated by the
inhomogeneity of the field; the other, occurring in the space of scales, constitutes the
natural generalization of the energy transfer associated with the Richardson cascade.
The detailed scale-by-scale balance, applied to the different regions in the various
ranges of scales, allows us to understand through which mechanisms, at which scales
and in which regions of the flow domain turbulent fluctuations are generated and
sustained.

The material is organized as follows. After this Introduction, § 2 consists of a
detailed description of the numerical data set and recalls the basic concepts in wall
turbulence. Section 3 introduces the generalized Kolmogorov equation and some of
its basic properties. Section 4 discusses the two kind of fluxes, in physical space
and through the scales, respectively. In § 5 the detailed scale-by-scale balance in the
different regions of the channel is discussed in detail while in the last section a
summary of the main findings and some final remarks are made. An appendix is also
included to assess the statistical quality of the data set used for the present analysis.
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Figure 1. (a) Flow configuration and nomenclature for the channel flow. The flow is from
left to right in the direction of the mean flow U (y). The streamwise direction is x ≡ x1.
The wall-normal and the spanwise coordinates are y ≡ x2 and z ≡ x3, respectively. The
corresponding fluctuation velocity components are denoted by u ≡ u1, v ≡ u2 and w ≡ u3,
respectively. (b) Sketch of the arrangement for two-point correlations. The velocities evaluated
at x′ (u′) and at x (u) are used to construct the increment δu. The separation vector is r , while
Xc denotes the mid-point. In the channel flow, the typical two-point observable, say 〈δu2〉,
is a function of the wall-normal coordinate of the mid-point Yc = 1

2
(y + y ′) and of the three

components of the separation vector rx , ry and rz.

2. Assessment of the data set
The simplest conditions in which to analyse the effect of inhomogeneity on the dyna-
mics of the small scales of a turbulent flow are provided by the geometry of a channel
between planar parallel walls, as sketched in figure 1(a). In this case turbulence
is statistically invariant under translations in the streamwise x and the spanwise z

directions, and time t , confining inhomogeneity only to the wall-normal direction y.
Consistently, any statistical observable involving np spatial points, see figure 1(b) for
the case np = 2, will depend only on a single y-coordinate and on np − 1 separation
vectors in such a way that ergodicity can be exploited to perform ensemble averaging
〈q〉 of a given quantity q in terms of spatial averages in wall parallel planes (x, z)
and in time.

In order to avoid the introduction of difficult to control simplifying assumptions, a
large and detailed data-set is required to explore the spatial and temporal structure
of the fluctuating field, given by the velocity components u(x, y, z, t), v(x, y, z, t),
w(x, y, z, t) and by the pressure field p(x, y, z, t). These requirements suggest the
use of results from a direct numerical simulation (DNS). The standard geometrical
configuration consists of a portion of a channel infinite in the streamwise and spanwise
directions. In this computational box with sides (Λx, 2h, Λz), where h is the channel
half-width and −h � y � h, periodic boundary condition are imposed in x and z, with
standard impermeability and no-slip on the solid walls. A mean pressure gradient
d〈p〉/dx is enforced to guarantee a prescribed mass flux M through the channel,
associated with the mean flow U (y).

Given obvious limitations on the available computational resources, only low-
Reynolds-number flows can be treated by DNS, which, on the other hand, is by
definition, the appropriate numerical tool to achieve a resolution up to the dis-
sipation scales. For the simulation, we rely on a well-established highly accurate
numerical formulation given by a spectral method exploiting Fourier–Chebyshev–
Fourier expansions in terms of the wall-normal components of velocity and
vorticity coupled with a mixed Crank–Nicholson/Runge–Kutta scheme for time
advancement, Lundbladh, Henningson & Johansson (1992). The friction Reynolds
number Re∗ = u∗h/ν, where ν is the kinematic viscosity and u∗ =

√
τ0/ρ is the so-

called friction velocity expressed in terms of the average shear stress τ0 at the wall and
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Figure 2. (a) Mean velocity profile U+ in viscous units vs. distance from the wall (h − |y|)+,
solid line. The dashed lines denote the linear and the log-law with a Kármán constant k = 0.41.
Classically the near-wall region is subdivided into the viscous sublayer 0 � (h − |y|)+ � L+

v ,
the buffer layer L+

v � (h − |y|)+ � L+
l and the log-layer above L+

l extending up to the bulk
region where the mean profile deviates from the log-law. Typically, for Newtonian turbulence,
L+

v � 5 and L+
v � 30. (b) Fluctuation intensities vs. distance from the wall. Velocities u+

rms(−−−),
v+

rms(− · −), w+
rms(−−), and pressure p+

rms(− ·· −).

the density ρ, is fixed to 180 to reproduce conditions well-explored in the literature
(Kim et al. 1987). The corresponding bulk Reynolds number is Reb = ub h/ν = 2600,
where ub is the velocity averaged through the channel section given by M/(2ρh). We
select 4 × 2 × 2 as the dimensions of the computational domain, which are close to
a minimum channel configuration (Jimenez & Moin 1991), with the number of grid
points equal to 256 × 129 × 128. In order to accumulate the statistics required for
a well-converged analysis of the scale-by-scale budget in inhomogeneous conditions,
long runs with small time step are mandatory. Our principal run has been continued,
after reaching a statistically steady state, for about N =2400 large-eddy turnover
times T = h/Ucl , where Ucl is the average velocity at the centreline; for the principal
run considered here Ucl = 0.8, with a time step Dt = 0.04. About 300 statistically
uncorrelated configurations of the channel were saved to disk to evaluate the pressure
field by post-processing and finally performing the statistical analysis. The length
of the simulation has a specific motivation. In the viscous sublayer the coherent
structures – the so-called streaks – have a very long survival time, of order more
than 500 inner time units (Kline et al. 1967). Since our computational domain is
close to a minimal channel unit (Jimenez & Moin 1991) only a few streaks are
present in each configuration (order of two or three – we checked the results against a
shorter, less-resolved simulation in a larger computational domain, see the Appendix).
Hence we cannot rely too strongly on spatial ergodicity. This implies that temporally
uncorrelated configurations are needed to obtain reliable statistics, hence the length
of the run.

Before describing the main achievements of the work, we briefly discuss the overall
quality of the data-set with the twofold purpose of introducing notation and recalling
some known results on the dynamics of the channel flow, as described by low-
Reynolds-number simulations.

The mean velocity profile U (y), normalized by the friction velocity, is shown in
figure 2(a) in comparison with the expected linear behaviour U+ = U/u∗ = (h − |y|)+
in the viscous sublayer, and the logarithmic law U+ = (1/k) log(h − |y|)+ + 5.5 with
Kármán constant of 0.4 (see e.g. Zagarola & Smits (1997) for a discussion of the
scaling properties of the mean velocity profile in wall-bounded flows). The two dotted
lines approximately define the boundary of the viscous sublayer, (h − |y|)+ = L+

v , and
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Figure 3. (a) Turbulent kinetic energy budget vs. distance from the wall (h−|y|)+: production
(−−−), viscous diffusion (− · −), pressure transport ( · · · ), turbulent convection (− ·· −), and
dissipation (−−), see equation (2.1). The details of the central region are shown in the inset.

(b) The solid line is Ls =
√

ε/S3 (in wall units) vs. distance from the wall. The dashed line
corresponds to k (h−|y|)+ and the circles denote the crossover scale �+

c between the production
and energy cascade term in viscous units, see equation (5.4). The inset is the Kolmogorov scale
η+ vs. distance from the wall.

the lower limit of the log-region, (h − |y|)+ =L+
l . As usual (h − |y|)+ = (h − |y|)u∗/ν

denotes the distance from the wall expressed in wall units, and a superscript + will in
general imply a quantity made dimensionless with respect to u∗, ν and ρ. The reader
may wish to return to figure 2 as a schematic visualization of the different regions of
the flow which are discussed in the forthcoming sections of the paper.

The wall-normal distributions of turbulent intensities urms , vrms and wrms ,
normalized by the wall shear velocity, are shown in figure 2(b). The peak of urms is
reached at (h − |y|)+ � 15, near the location of maximum kinetic energy production,
see figure 3(a). The root-mean-square pressure fluctuation, normalized by ρu∗

2, is
shown by the dash-double dotted line, see Kim et al. (1987) for a comparison.

The different terms in the equation for the turbulent kinetic energy,

−〈uv〉dU

dy
− 1

2

d

dy
〈uiuiv〉 +

ν

2

d2〈uiui〉
dy2

− 1

ρ

d〈pv〉
dy

− 〈ε〉 =0, (2.1)

namely production, turbulent convection, viscous diffusion, pressure transport and
pseudo-dissipation ε = ν〈(∂ui/∂xj )(∂ui/∂xj )〉, respectively, are reported in figure 3(a),
where the inset shows the detailed behaviour of various terms in the core region of
the flow to be addressed in § 4.

Introducing the definition of the overall flux of turbulent kinetic energy,

φ(y) = 1
2
〈uiuiv〉 − ν

2

d〈uiui〉
dy

+
1

ρ
〈pv〉 (2.2)

equation (2.1) becomes

dφ(y)

dy
= σ (y), (2.3)

where σ (y) = π(y)−〈ε(y)〉 is the net source at location y given as the difference between
production π = −〈uv〉dU/dy and average dissipation. By integration of equation (2.3)
from the wall to the current location ȳ, the flux φ(ȳ) is interpreted as the amount of
turbulent kinetic energy per unit time and area which leaves the layer −h � y � ȳ to
enter the region above.
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Around the peak, π is substantially greater than 〈ε〉 and there the turbulent
energy flux contributes to the energy supply of regions both below and above. In
the logarithmic region of large-Reynolds-number flows, instead, the production–
dissipation ratio is nearly unity and the flux is almost constant. The energy carried
by φ through this equilibrium layer is spent in sustaining the fluctuations in the bulk
region of the flow. Despite the fact that the asymptotic equilibrium state has not been
reached yet at the Reynolds number of the present simulation, the energy intercepted
in the log-region is nonetheless a small fraction of the amount locally produced by
the shear, leaving the gross features unchanged.

Figure 3(b) shows the shear scale Ls =
√

ε/S3, where S = dU/dy, which at large
Reynolds number, in the log-region, is expected to behave linearly with the wall
distance, Ls � k(h − |y|). The symbols denote the cross-over scale between the
production and the transport term which contributes to the energy cascade as will
be discussed in § 5. The Kolmogorov scale η = (ν3/ε)1/4 in wall units is shown in the
inset to evaluate the resolution of the simulation, namely �x+ = 2.8, �z+ = 2.78 and
�y+ varying from 0.05 to 4.4 from the wall to the channel centreline, which is largely
sufficient to achieve a well-resolved DNS.

3. The generalized Kolmogorov equation
The turbulent kinetic energy balance (2.1) alone is insufficient to satisfactorily describe
the dynamics of a turbulent flow. Turbulence in wall-bounded flows is characterized by
several interacting processes, such as energy production, spatial redistribution, energy
cascade and dissipation. The relative importance of different phenomena may change
significantly depending on the geometrical location (i.e. the distance from the wall)
and the range of scales considered. A complete understanding of these interacting
phenomena requires a detailed description of the processes occurring simultaneously
in the geometric space and in the space of turbulent scales. One should be able to
address the energy content of a given scale and evaluate its dependence on the spatial
position. The proper quantity to consider is the so-called second-order structure
function defined as 〈δu2〉, where δu2 = δuiδui and δui = ui(xs + rs) − ui(xs) denotes
the fluctuating velocity increment. Loosely speaking, 〈δu2〉 measures the amount of
fluctuation energy at scale r =

√
rsrs and therefore, following Danaila et al. (2000),

it will be hereafter referred to as scale energy. From its definition, the scale energy
depends on r – more precisely on the separation vector ri = xi

′ − xi – and on the
location specified by the mid-point Xci =

1
2
(xi

′ + xi), see figure 1(b) for a sketch of the
arrangement.

Figure 4(a) shows the isolines of the scale energy on the plane rx, Yc for ry = rz = 0,
i.e. the function 〈δu2(rx, 0, 0|Yc)〉, where Yc = 1

2
(y + y ′) is the wall-normal coordinate

of the mid-point. Usually, structure functions are plotted as functions of separation,
using the wall-normal position as a parameter. In our context, the present, slightly
unconventional, representation in terms of isolines in the (rx, Yc)-plane has the
advantage of combining, in a synthetic way, the description of the field in physical
space (Yc) and in the space of turbulent scales (rx). The expected small-scale
asymptotics of the scale energy, given by 〈δu2〉 � 〈(∂u/∂x)2 + (∂v/∂x)2 + (∂w/∂x)2〉 r2

x ,
is consistent with the behaviour near the Yc-axis of the figure. The near-wall
asympotics, i.e. for |Yc| � h, given by 〈δu2〉 � 2 〈δτ 2

x + δτ 2
z 〉 (h − |Yc|)2/(ρν)2, where

〈δτ 2
x/z〉 denotes the mean-square fluctuation of the x/z-component of the instantaneous

wall shear stress increment at the considered separation, is also apparent near the
rx-axis. For clarity, 〈δu2〉 as a function of the wall-normal distance is also reported in
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Figure 4. (a) Isolines of the scale energy 〈δu2(rx, 0, 0|Yc)〉, normalized by u2
∗, in the
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c )-plane. (b) 〈δu2(rx, 0, 0|Yc)〉 vs. (h − |Yc|)+ for different rx: r+
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dotted line), r+
x = 70 (long dashed line), r+

x = 100 (dashed-dotted line), r+
x = 220 (dashed line).

The solid line is 2(u2
rms + v2

rms + w2
rms). Inset: 〈δu2(rx, 0, 0|Yc)〉 vs. r+

x for different (h − |Yc|):
(h−|Yc|)+ = 4 (dashed-dotted line), (h−|Yc|)+ = 20 (solid line), (h−|Yc|)+ = 80 (dashed-double
dotted line), (h − |Yc|)+ = 100 (long dashed line), (h − |Yc|)+ = 180 (dotted line).

the main part of figure 4(b) for fixed separations. The plots corresponds to Yc-sections
of the (rx, Yc)-plane shown in (a). Overall the scale energy presents a maximum in the
buffer layer which is sharper for larger separations but becomes smoother as rx is
reduced. The traditional plots showing the rx-behaviour for fixed Yc are shown in the
inset. At large separations, where the velocities at the two points are uncorrelated, the
limiting behaviour is given by 2 (u2

rms + v2
rms + w2

rms), i.e. four times the total turbulent
kinetic energy pertaining to the considered value of Yc. This quantity is represented
by the solid line as a function of Yc in the main panel of figure 4(b).

3.1. Homogeneous flows

In the simplest case of stationary homogeneous isotropic turbulence only the energy
cascade and dissipation are relevant and the scale-energy balance at different scales
is described by the classical Kolmogorov equation

∂〈δu2δui〉
∂ri

= −4〈ε〉 + 2ν
∂〈δu2〉
∂ri∂ri

. (3.1)

As is well known, in the inertial range the viscous correction is negligible and
the turbulent component of the energy flux through scales 〈δu2δu‖〉 = 〈δu2δui〉ri/r

is balanced by the energy dissipation (Frisch 1995). At smaller and smaller scales,
the inertial contribution becomes less and less important, so that the dissipation is
balanced by the viscous diffusion term. This picture is claimed to be highly universal,
in the sense that, no matter what the details of the flow are at large scales, the small
scales of large-Reynolds-number flows are believed to behave according to the balance
established by the Kolmogorov equation (3.1). In its universality, equation (3.1)
deliberately neglects the details of the process which feeds the turbulence to provide
the constant energy flux though the inertial range.

The next step, in a sequence of increasingly complex flows, is represented by the
homogeneous shear flow. In this case, besides energy transfer, viscous diffusion and
dissipation, the additional process of energy production is explicitly taken into account.
This prototypical flow, with several aspects idealized as much as homogeneous
isotropic turbulence, isolates the turbulence production mechanism due to the mean
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shear. The appropriate form of the Kolmogorov equation is

∂〈δu2δui〉
∂ri

+
∂(〈δu2〉Sry)

∂rx

+ 2S〈δuδv〉 = −4〈ε〉 + 2ν
∂〈δu2〉
∂ri∂ri

, (3.2)

where y is the direction of the shear S = dU/dy, with a mean velocity U (y) = Sy in the
x-direction, and u and v are the components of the fluctuation velocity in direction
x and y, respectively. The inertial transfer term for the fluctuations is split into two
contributions: one due to the fluctuating field; the other associated with the mean
flow – in this case the increment of the mean velocity field is δUi = Sryδi1. The process
of energy production, represented by the term 2S〈δuδv〉, alters the classical balance
and introduces a new scale �c defined as the cross-over between the convective energy
flux and the production term (Casciola et al. 2003). The cross-over scale, dimensionally
related to the so-called shear scale Ls =

√
〈ε〉/S3, splits the inertia-dominated range

into a classical inertial range at small scales, where equation (3.1) is recovered, from
a production-dominated range at large scales. Below �c one may model the dynamics
by means of equation (3.1) completed with an assigned incoming energy flux at
scales O(�c).

3.2. Scale-energy budget for a simple shear

Inhomogeneity poses a new challenge in understanding turbulent dynamics, by
introducing spatial transfer terms and by spatially modulating the balance. The
extension of the Kolmogorov equation to inhomogeneous conditions can be achieved
following the procedure described by Hill (2002), see also Yakhot (2001) and Kurien &
Sreenivasan (2001) for an alternative approach. The two geometrical points where the
relevant velocity increment δui = ui

′ − ui is evaluated are expressed as xi
′ =Xci + ri/2

and xi = Xci − ri/2. After lengthy calculations the final equation is (for a detailed
derivation see Hill 2002)

∂〈δu2δuj 〉
∂rj

+
∂〈δu2δUj 〉

∂rj

+ 2〈δuiδuj 〉∂δUi

∂rj

+
∂〈u∗

j δu
2〉

∂Xcj

+
∂〈δu2U ∗

j 〉
∂Xcj

+ 2〈u∗
j δui〉

∂δUi

∂Xcj

= −4〈ε∗〉 + 2ν
∂2〈δu2〉
∂rj ∂rj

− 2

ρ

∂〈δpδui〉
∂Xci

+
ν

2

∂2〈δu2〉
∂Xcj

2
, (3.3)

where an asterisk denotes a mid-point average, e.g. u∗
i = (ui(xs

′) + ui(xs))/2, and as
before, δ denotes an increment, e.g. δUi = Ui(xs

′) − Ui(xs).
For a simple shear with mean velocity U (y) in the x-direction equation (3.3)

specializes to

∂〈δu2δui〉
∂ri

+
∂〈δu2δU〉

∂rx

+ 2〈δuδv〉
(

dU

dy

)∗

+
∂〈v∗δu2〉

∂Yc

= −4〈ε∗〉 + 2ν
∂2〈δu2〉
∂ri∂ri

− 2

ρ

∂〈δpδv〉
∂Yc

+
ν

2

∂2〈δu2〉
∂Yc

2
, (3.4)

which is the starting point for the present analysis of inhomogeneity effects on
turbulent fluctuations in a channel flow.

Equations (3.3) and (3.4) were originally conceived in terms of the two spatial
variables (xi

′, xi). The change of variables to the new set (Xci, ri) allows us to
directly recover Kolmogorov equation (3.1) as homogeneous isotropic conditions
are approached. In this remapping, the Xci dependence is naturally associated with
inhomogeneity, since, for homogeneous flows each term containing derivatives with
respect to the mid-point vanishes and equation (3.4) reduces to (3.2).
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3.3. The behaviour at large scales

Equations (3.3) and (3.4) manifest a well-defined asymptotic behaviour as larger and
larger scales are approached. For r 
 �, where � is the relevant correlation length,
quantities evaluated at xi and xi

′ are uncorrelated and equation (3.3) reduces, within
a factor 4, to the mid-point average of the single-point energy budget (2.1). In this
respect, equation (2.1) is contained in the more general scale-energy budget (3.4) as a
limiting case.

More specifically, at large scales we observe that

lim
r→∞

∂〈δu2δuk〉
∂rk

=
1

2

(
∂〈u2uk〉

∂xk

+
∂〈u′2uk

′〉
∂xk

′

)
=

∂〈u2uk〉∗

∂Xck

, (3.5)

where ∂/∂rk = 1
2
(∂/∂xk

′−∂/∂xk) and ∂/∂Xck
=(∂/∂xk

′+∂/∂xk). For homogeneous flows,
the right-hand side of equation (3.5) is zero, and the divergence in r-space of the
turbulent component 〈δu2δuk〉 of the scale-energy flux vanishes as the separation is
increased. At this condition the turbulent flux also vanishes since

lim
r→∞

〈δu2 δuk〉 = δ 〈u2 uk〉. (3.6)

This implies, e.g., that in the homogeneous shear flow the energy cascade is initialized
at finite separations by the displacement towards small scales of the energy provided
by the production term. Similarly, the Kolmogorov equation stated in the form (3.1)
necessarily requires a feeding of the energy flux at finite separations. This boundary
condition on the energy flux is frequently enforced by introducing a stochastic forcing
acting at large but finite scales.

In this context, large-scale inhomogeneity introduces an additional feature which
is particularly significant for wall-bounded flows, where strong y dependence is
expected. For instance, for a channel flow, given a separation vector in the wall-
parallel plane (rx, 0, rz), equation (3.5), as r increases, yields ∂〈δu2δv〉/∂ry → d〈u2v〉/dy,
which corresponds to twice the turbulent transport term of the turbulent kinetic
energy budget (2.1). As shown in figure 3(a) this turbulent convection term, which is
significant in the entire channel section, enforces the large-scale boundary condition for
the r-space divergence of the scale-energy flux. Concerning the asymptotic behaviour
of equation (3.4), one cannot miss that a factor 2 is still needed in order to recover the
correct result given by four times the transport term in the turbulent kinetic energy
equation. This contribution, which stems from ∂/∂Yc〈v∗δu2〉, is discussed in § 4.

4. Fluxes of scale energy
Formally the scale-energy budget (3.4) can be recast as

∇r · Φr (r, Yc) +
dΦc(r, Yc)

dYc

= s(r, Yc), (4.1)

where r = (rx, ry, rz) and boldface type denotes a three-dimensional vector.
In the conservation form (4.1) two kinds of scale-energy fluxes exist, namely Φr in

the space of scales and Φc in geometrical space. The source term,

s(r, Yc) = −2〈δuδv〉(dU/dy)∗ − 4〈ε∗〉, (4.2)
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Figure 5. (a) Integration domain for equation (4.1). (b) Physical interpretation of the spatial
flux Φc(rx, 0, rz|Yc).

accounts for production due to shear and dissipation. Various contributions to the
fluxes can be identified,

Φc( r, Yc ) = 〈δu2v∗〉 +
2

ρ
〈δpδv〉 − ν

2

d〈δu2〉
dYc

, (4.3)

Φr ( r, Yc ) = 〈δu2δu〉 + 〈δu2δU〉 − 2ν∇r〈δu2〉, (4.4)

in principle related to turbulent transport, transport by the mean flow (absent in Φc),
viscous diffusion and, only in Φc, pressure–velocity correlation.

The integration domain for equation (4.1), corresponding to the constraint −h �
y, y ′ � h, i.e. to the geometry of the channel flow, is

−h � Yc � h, −2(h − |Yc|) � ry � 2(h − |Yc|), (4.5)

see figure 5(a).
The spatial flux describes the transport of scale energy in geometric space and is, in

principle, a three-dimensional vector – see equation (3.3) – that could be denoted by
the boldface type Φc. For a channel flow the only non-vanishing component of Φc,
namely the scalar Φc appearing in (4.1), corresponds to a transfer of energy at scale
r in the y-direction, i.e. towards the wall or towards the bulk of the flow according
to its sign. In fact, after setting ry = 0 and accounting for the boundary conditions,
term-by-term integration of equation (4.1) from the (lower) wall to the current value
of Yc,

Φc(rx, 0, rz|Yc) =

∫ Yc

−h

[ s(rx, 0, rz|Ỹc) − ∇r · Φr (rx, 0, rz|Ỹc) ] dỸc, (4.6)

leads to the interpretation of Φc(rx, 0, rz|Yc) as the amount of scale energy which
leaves the region below Yc to feed the portion of the channel above, see figure 5(b)
for a sketch.

4.1. The r-averaged equation

When discussing the Kolmogorov equation for homogeneous flows, (3.1), it is
customary to consider its r-averaged form obtained by integrating the equation
over a ball of radius r in the space of scales. The procedure highlights the role of
the energy flow across scales, Φr , and leads to the classical form of the Kolmogorov
equation in terms of longitudinal velocity increments.
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An analogous procedure can be used in principle for the generalized form (4.1) for
unbounded flows which, in r-averaged form, would be

1

Vr

∫
∂Br

Φr (r, Yc) · nr dSr +
1

Vr

∫
Br

dΦc(r, Yc)

dYc

dVr =
1

Vr

∫
Br

s(r, Yc) dVr, (4.7)

where nr is the outward normal to the ball Br with radius r and volume Vr . This
integral form identifies Φr as a transfer of scale energy among scales above and
below r . A negative value of Φr · nr implies that scale energy is transferred inside the
ball from the exterior, i.e. we are in the presence of the classical direct, or forward,
cascade of Richardson. In homogeneous isotropic turbulence, at inertial separation
one recovers

1

Vr

∫
∂Br

Φr (r) · nr dSr ∝
〈 δu3

‖ 〉
r

< 0, (4.8)

which gives the well known four-fifths law.
When dealing with the geometry of the channel, however, the integration over a

sphere is unsuitable for two main reasons. First, spheres with radius r exceeding the
distance from the wall 2

(
h − |Yc|

)
are not entirely contained within the flow region,

see the integration domain (4.5) sketched in figure 5. Secondly, averaging over a sphere
implies averaging in the wall-normal direction which is undesirable for a flow with
a strong y-dependence. To overcome these drawbacks, we consider r-averaging on
two-dimensional square domains of side r belonging to wall parallel planes, according
to the expression

Qr (r, Yc) =
1

r2

∫ r/2

−r/2

∫ r/2

−r/2

q(rx, 0, rz|Yc) drxdrz, (4.9)

where q denotes a generic quantity.
When applying the r-averaging operator (4.9), the contribution from the second

term on the left-hand side of equation (3.4) vanishes altogether, since δU = 0 when
ry =0. The r-averaged form of the equation then follows as

Tr (r, Yc) + Π (r, Yc) + Tc(r, Yc) = E(r, Yc) + Dr (r, Yc) + P (r, Yc) + Dc(r, Yc) (4.10)

where each term corresponds to the appropriate term in (3.4). Specifically, Tr gives
the inertial contribution to the scale-energy flux in r-space, which is proportional to
〈δu3

‖〉/r for homogeneous isotropic turbulence. Π arises from the first contribution

to the source term s, which is due to production. This term is already present in
the homogeneous shear flow. Tc is the inertial contribution to the spatial flux of
scale energy and it is strictly associated with inhomogeneity. E is the term related to
dissipation which arises from the second contribution to the source s. Dr and Dc are
the diffusive components of the flux in r-space and in geometric space, respectively,
and, finally, P is an inhomogeneous contribution related to the pressure–velocity
correlation.

4.2. Spatial redistribution of energy

We analyse first the spatial component of the scale-energy flux Φc. Figure 6(a) plots
the r-space average of Φc(r, Yc), according to definition (4.9), as a function of the
distance from the wall for different values of the separation r . Two well-separated
regions where the spatial scale-energy flux is negative and positive, respectively, are
apparent. Where it is negative, the spatial flux transfers scale energy towards the wall;
where it is positive, towards the bulk of the flow. The sustainment of turbulence for
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Figure 6. (a) The r-space average of Φc as a function of the distance from the wall (h− |Yc|)+
for different values of the scale r+: r+ = 5 (− ·· −), r+ = 10 (−−), r+ = 20 (· · ·), r+ = 40
(− · −), r+ = 120 (−−−). The r-space average is performed on two-dimentional square domains
(rx, rz), with side r at Yc = const and ry = 0. (b) Different contributions to the r-space average
of Φc , see equation (4.3), as a function of (h − |Yc|)+ for fixed separation r+ = 40. Φc(−−−),
viscous diffusion (− ·· −), pressure transport (− · −), turbulent flux (−−).
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Figure 7. (a) Different contributions to the r-space average of Φc , see equation (4.3), vs.
separation r+ for (h − |Yc|)+ = 80. Φc(−−−), viscous diffusion (− ·· −), pressure transport
(− · −), turbulent flux (−−). (b) Turbulent transport of scale energy (non-averaged) 〈δu2v∗〉
vs. distance from the wall (h − |Yc|)+ for different separations, r+ = 20 (− · −), r+ = 40 (· · ·),
r+ = 80 (−−), r+ = 170 (− ·· −). The solid line corresponds to twice the turbulent energy flux
( 1
2
〈 u2 v 〉), see (2.1), according to the limiting behaviour (4.11).

all scales is partially due to a spatial transport of scale energy generated in the buffer
layer. However the importance of this process will change depending on both the
specific scale and the geometric location considered. This issue will be treated in full
detail in the next section.

Figure 6(b) displays the different contributions to the r-average of Φc at r+ = 40. The
spatial flux (solid line) changes sign at (h − |Yc|)+ � 15, which closely corresponds to
the location of the maximum turbulent kinetic energy production. For (h−|Yc|)+ > 15
the most important contribution is provided by the turbulent transport, the first
term in definition (4.3) (dashed lines in figure 6b). This is confirmed by inspection
of figure 7(a) which plots the same quantities, now as functions of the separation
r at (h − |Yc|)+ = 80. In the large-scale limit, all terms tend to an asymptotic value
determined by the corresponding terms in the turbulent kinetic energy equation (2.1),
as discussed in § 3.3. Below (h − |Yc|)+ = 15 the most significant contribution to Φc

is given by the viscous diffusion, the last term in the definition (dash-double dotted
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Figure 8. The r-space average of the turbulent transport of scale energy 〈δu2v∗〉, normalized
by u3

∗, as a function of the distance from the wall (h−|Yc|)+ and of the scale r+. The uniformly
spaced contour levels are shown by solid and dashed lines for positive and negative values,
respectively.

line in figure 6b). Across the buffer layer, up to the lower part of the log-region, the
pressure-velocity correlation also contributes significantly (the second term in (4.3)).

Let us consider in more detail the turbulent component of the spatial flux 〈δu2v∗〉
addressed – in its non-averaged form – in figure 7(b) which displays 〈δu2v∗〉(rx, 0, 0|Yc)
as a function of (h − |Yc|) for increasing separations. In the limit of large separations
one finds

lim
r→∞

〈δu2v∗〉 = 〈u2v〉∗, (4.11)

which corresponds to twice the turbulent flux of the single-point kinetic energy
budget (2.1) (solid line in figure 7). This provides the missing factor 2 in the large-r
asymptotics discussed in § 3.3. A trend to form a plateau in correspondence with the
log-layer can be guessed from the plots. In fact, as the Reynolds number is increased,
〈u2v〉 is known to approach a constant value in the log-layer, Moser et al. (1999).
The same behaviour is expected concerning the turbulent component of Φc, namely
〈δu2v∗〉, implying that, for large Reynolds numbers, the log-layer is asymptotically
traversed by an almost constant flux of scale energy.

Figure 8 shows the isolines of the r-space average of 〈δu2v∗〉. This is a function
of two variables, namely the scale r and the position Yc, and is represented by its
contours for the reasons already mentioned for figure 4. The turbulent component of
the spatial flux is clearly built-up in the buffer layer and is particularly significant at
inertial separations. It reaches its maximum in the log-layer, to progressively decrease
as the centreline of the flow is approached. This decrease implies that the amount
of scale energy carried by the flux is progressively released to the fluctuations in
the core region. Moreover, 〈δu2v∗〉 also contributes to feeding the viscous sublayer,
as shown by its negative values near the wall. From the pattern of the isolines it
is clear that vanishingly small values of the turbulent flux are attained close to the
centreline of the channel. The same isolines pass close to the (h − |Yc|)-axis, implying
that at viscous separations – small r – the turbulent component of the spatial flux is
negligible, as expected. The similarity between the gross features of figure 8, concerned
with the r-averaged turbulent flux, and those of figure 4, giving the scale energy, is
in a way understandable, since the two quantities are strictly related. In fact, both
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plots highlight the crucial role of the large scales of the buffer layer, as the preferred
location for the scale energy, for the scale-energy production and, consistently, for the
turbulent component of the spatial flux discussed here.

5. Scale-by-scale budget
Let us now consider the detailed balance expressed by the r-averaged scale-energy

budget (4.10). The effective amount of scale energy per unit time which is available
at location Yc is provided by the local production Π plus the r-averaged divergence
of the spatial flux, Φc, minus the local dissipation E. This net rate of scale energy
intake feeds the cascade across scales described by Tr . To ease the interpretation of
the diagrams, it is instrumental to group together some terms of equation (4.10): we
have decided to add together the contributions of inertial origin in a sort of effective
production

Πe(r, Yc) = Π (r, Yc) + Tc(r, Yc) − P (r, Yc). (5.1)

It corresponds to the amount of scale energy made available at the particular scale
and location by production and overall turbulent transport. Clearly, the single
contributions are not positive definite, while their sum must be positive where
turbulent energy stems from inertial mechanisms. Analogously, the contributions
of diffusive nature have been added to form a modified dissipation rate,

Ee(r, Yc) = E(r, Yc) + Dr (r, Yc) + Dc(r, Yc), (5.2)

as the sum of the actual dissipation and the diffusive fluxes of scale energy in physical
and r-space, respectively. With these definitions, the r-averaged balance is expressed
in more concise form as

Tr (r, Yc) + Πe(r, Yc) = Ee(r, Yc), (5.3)

to be read as: transfer across scales plus effective production equals effective dissi-
pation.

In the following, equation (5.3) and the different contributions to effective
production and dissipation will be addressed on the basis of the traditional topology
of the flow, see figure 2 and its caption. In describing the different regions, instead of
the standard sequence, we prefer to follow this conceptual one: first we address the log-
layer, which closely resembles the homogeneous shear flow. Secondly the bulk region,
where substantial differences with respect to homogeneous-isotropic turbulence arise
due to the spatial fluxes. Finally, after considering the viscous sublayer where the effect
of viscosity is prevailing at all scales, we conclude by discussing the buffer layer which
is considered as the engine of wall turbulence. The main results are shown in several
figures with a common format, each pertaining to a different position. Let us describe
their common structure, see e.g. figure 9. Panel (b) shows the components of the
effective production Πe defined in (5.1). The components of the effective dissipation,
(5.2), are reported in the inset. All these quantities are plotted with a minus sign, to
ease the comparison with panel (a) concerning the global budget, (5.3). The sum of Tr

and Πe is plotted there as symbols, while the solid line represent Ee. The imbalance
between the right- and left-hand sides of (5.3), graphically given by the misplacement
of the symbols with respect to the dashed line, is a measure of the statistical error
in the data (see the Appendix). The cross-over point between Tr and Πe is a central
issue in the discussion of the results (see figure 3b). To better visualize its position the



206 N. Marati, C. M. Casciola and R. Piva

–0.05

0

0.05

r/η

0

0 10 20 30 40
r/η

0 10 20 30 40

0.02

0.04

0.06

0.08

0 10 20 30 40

–0.05

0

0.05
(a) (b)

Figure 9. Detailed balance (5.3) in the log-layer, (h − |Yc|)+ = 80. (a) The sum (Tr + Πe) is
represented by the filled circles, Ee is given by the dashed line. The solid line is −Πe , the
dash-dotted line corresponds to −Tr . (b) The different contributions to the effective produc-
tion, −Πe , (5.1), plotted as functions of the scale r , namely production −Π (solid line),
turbulent transport −Tc (dashed line) and pressure transport −P (dash-dotted line); note
that the sign of each term has been changed. In the inset, the various terms of the effective
dissipation Ee , (5.2): dissipation E (solid line) and diffusion of scale energy in physical and in
r-space, Dc (dashed line) and Dr (dash-dotted line), respectively.

r/η
0 10 20 30 40

r/η
0 10 20 30 40

0.15

0.10

0.05

0

–0.05

–0.10

–0.15
0

0.02

0.04

0.06

0.08

0 10 20 30 40

–0.1

0

0.1

(a) (b)

Figure 10. As figure 9 but at (h − |Yc|)+ = 60 (log-layer).

sign of these two terms has been changed to separate the relevant graph from other
curves in the same panel.

5.1. The log-layer

We are now ready to analyse the log-layer. Figure 9 addresses the balance (5.3) for a
typical location in this region, specifically (h − |Yc|)+ = 80. As anticipated, figure 9(a)
shows the budget, which will be discussed in a while. Let us first analyse the different
contributions to the effective production (5.1) displayed in figure 9(b). In the log-
layer Πe � Π , since turbulent and pressure transport, Tc and P , respectively, are
much smaller than Π , see also figures 10 and 11 corresponding to (h − |Yc|)+ = 60
and 100, respectively. The plots of the different terms contributing to the effective
dissipation (5.2) are shown in the inset. As expected, in the log-layer the diffusive flux
of scale energy in physical space, Dc, is very small while the corresponding term in
r-space, Dr , is crucial at small scales, becoming negligible at inertial separations where
Ec � E. Overall, the dynamics is identical to that observed in the homogeneous shear
flow discussed in Casciola et al. (2003), where the sum of the inertial component of
the flux across scales, Tr (i.e. the energy cascade term), and production Π balances
dissipation plus diffusion across scales. The detailed budget (5.3) is represented in
figure 9(a), which plots the sum (Tr + Πe) in comparison with Ee. In the same figure
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Figure 11. As figure 9 but at (h − |Yc|)+ = 100 (upper log-layer).

cascade and production terms are compared to establish the range of scales where
each is most significant for the dynamics of turbulent fluctuations. Apparently, at
large separations the production overwhelms the cascade term, and Π > Tr down to
a cross-over scale �c(Yc) defined by the condition

Π (�c, Yc) = Tr (�c, Yc). (5.4)

According to the classical equilibrium theory for the log-layer, the local dissipation
can be estimated in terms of production of turbulent kinetic energy, 〈ε(y)〉 � u3

∗/(ky).
By comparing the order of magnitude of the fluctuations induced at scale r by the
shear, δus(r) � Sr , with that typical of the classical Kolmogorov-like inertial range,
δuK (r) � 〈ε〉1/3r1/3, one is led to expect the cross-over between production-dominated

and cascade-dominated range to occur at the shear scale Ls =
√

〈ε〉/S3. Given the
estimate for the dissipation, since S(y) � u∗/(ky), one finds the classical prediction
�c(Yc) � k(h − |Yc|). The cross-over scale (5.4) as function of the distance from the wall
is reported in figure 3, which shows a remarkable agreement with the dimensional
prediction.

Generally speaking, the dynamics of the log-layer, as the equilibrium region where
global production and dissipation balance, reproduces the condition of a locally
homogeneous shear. Above the cross-over scale, i.e. in the production range, the shear
is able to energize the fluctuations; below �c the shear plays no significant role and
the corresponding dynamics reduces to the classical Richardson cascade which is
eventually terminated at the local dissipative scale by diffusion. Inhomogeneity plays
here only a minor role expected to vanish with increasing Reynolds number. However,
a substantial difference with the homogeneous shear flow is worth emphasizing: the
log-layer is traversed by an almost constant flux of scale energy directed towards the
bulk region of the flow. The viscous component is entirely negligible at all scales,
with respect to the turbulent flux, see, e.g., figure 7(a). Despite the leading role of
the turbulent flux in the log-layer, its divergence is sufficiently small in comparison
with the other terms of the budget to be dynamically ineffective – see figures 9(b),
10(b), 11(b). The shape of the turbulent flux 〈δu2v∗〉 as a function of Yc for fixed r is
bounded by its limiting behaviour for r → ∞, i.e. its shape at all scales is controlled by
the turbulent transport term of the single-point turbulent kinetic energy equation –
see the discussion concerning figure 7(b) in § 4.2. As discussed e.g. by Moser et al.
(1999), for increasing values of the Reynolds number, the turbulent kinetic energy
flux should more and more approximate to a constant in the log-layer, inducing an
identical behaviour in the turbulent transport of scale energy in Yc-space. Hence its
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Figure 12. Production Π (solid line) and turbulent flux Tc (dashed line) of scale energy in the
bulk region of the turbulent channel flow. (a) (h−|Yc|)+ = 130. (b) Centreline, (h−|Yc|)+ = 180.

divergence should become zero in the limit and the fact that in the present simulation
it is not strictly zero should be regarded as a finite-Reynolds-number effect.

According to the above picture, the log-region appears as an equilibrium layer
of essentially inviscid nature across which the scale energy is found to flow with
no effective interference with the local dynamics. In particular, for scales dominated
by the classical inertial terms, i.e. for η � r � �c, see figure 3(b) to appreciate the
extension of this range as a function of wall distance, two kinds of inviscid/turbulent
fluxes of scale energy take place: one in physical space directed from the wall towards
the bulk of the channel, the other in the space of scales, directed from the large
towards the small scales.

5.2. The bulk region

In the log-layer, the production of scale energy Π is always much larger than the
injection via turbulent and pressure transport, Tc and P in equation (5.1), respectively
(see figures 9(b), 10(b) and 11(b)). As the bulk of the flow is approached the shear
becomes smaller and smaller, entailing the drastic reduction of the local production
term. The turbulent fluctuations are here mainly sustained by the divergence of the
spatial turbulent flux of scale energy. Figure 12 provides a direct comparison between
Π and Tc for the entire range of available scales at a location close to (panel(a),
(h − |Yc|)+ = 130) and right at the channel centre (panel(b), (h − |Yc|)+ = 180). The
corresponding plots should be analysed by recalling the results shown in figure 11(b),
which displays the same quantities for the external part of the log-layer. In the log-
layer the divergence of the turbulent flux of scale energy is always sub-leading with
respect to the local production. As the bulk of the flow is approached, the production
of scale energy still remains predominant at large scales, while a significant amount
of scale energy at small scales begins to be supplied by the wall-normal turbulent
flux, see figure 12(a). On reaching the centreline the production should exactly vanish
uniformly through the entire range of scales, so that the entire amount of scale energy
carried by the spatial flux now feeds the turbulence, see figure 12(b) giving the relevant
components of the effective production on the symmetry line.

The detailed balance at the centreline, (h − |Yc|)+ = 180, is shown in figure 13(a).
The effective production, essentially given by the divergence of the turbulent flux Tc,
is systematically less than the turbulent flux across scales, represented by Tr . Their
sum equals the effective dissipation, whose components are plotted in the inset of
figure 13(b). Intuitively, the bulk region is also an inertia-dominated region where
viscosity only acts on the dissipative scales of the flow through the viscous component
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Figure 13. As figure 9 but in the bulk region, (h − |Yc|)+ = 180.
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Figure 14. As figure 9 but in the sublayer, (h − |Yc|)+ = 3.

Dr of the scale-energy flux across scales. A specific feature of the channel centreline,
Yc = h, is that, at large separations, effective production equals turbulent flux across
scales, namely

lim
r→∞

Tr (r, h) = lim
r→∞

Πe(r, h), (5.5)

where the common limit is given by half the effective dissipation Ee(r, h), as shown
for large r in figure 13(a). This is a straightforward consequence of the symmetry of
the flow, which implies Π = 0, and the limiting behaviours (3.5) and (4.11).

5.3. The viscous sublayer

In § 4.2 the viscous sublayer has been shown to receive scale energy from above through
the flux of energy, Φc, which is directed towards the wall. As shown in figure 6(b), the
predominant contribution to the r-averaged value of Φc is provided by the viscous
diffusion term. Its divergence, i.e. its Yc-derivative Dc, contributes to the effective
dissipation Ee as defined in equation (5.2). For (h − |Yc|)+ = 3 this term is shown in
the inset of figure 14(b). In fact, Dc provides only a small contribution to the effective
dissipation, significant mostly at large scales. Concerning small scales, as everywhere
else in the channel, the behaviour of Ee is determined by the actual dissipation and
by the scale diffusion Dr . Figure 14(b) displays, as usual, the different terms of the
effective production Πe. Most of the scale energy made available to the fluctuations
in the sublayer is generated by the genuine production term Π which operates via
the local shear. However, turbulent and pressure transport contribute to a significant
extent. In fact, despite the fact that turbulent and pressure transport contributions to
Φc are relatively small in the viscous sublayer their strong Yc dependence generates a
non-negligible divergence and contributes a significant part of Πe.
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Figure 15. As figure 9 but in the buffer layer, (h − |Yc|)+ = 20.
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Figure 16. As figure 9 but at (h − |Yc|)+ = 10 (buffer layer).

The detailed balance is described by figure 14(a). In rough terms, the modified
dissipation is counterbalanced by the modified production. The spatial transfer of
scale energy, found to be crucial for the sustainment of the turbulence in the bulk
region where no production occurs, is here less important since most of the energy is
generated locally. Concerning the behaviour in the space of scales, a similar comment
applies: the inertial transfer across scales plays a less significant role, with production
and dissipation mostly taking place locally in the space of scales, in agreement with
the well-established idea that, very close to the wall, viscosity is relevant at all scales.

5.4. The buffer layer

After the previous discussion of the log, the viscous and the bulk region, we are now
ready to describe in detail the dynamics of the buffer layer, where most of turbulence
activity is originated. According to the classical description, the buffer is identified
with the transition region from the near-wall asymptotics of the viscosity-dominated
sub-layer to the essentially inviscid scaling which characterizes the log-layer. This
smooth transition is reproduced in the different terms of the scale-energy balance, as
shown by the comparison of figure 15, deep within the buffer, with figure 16, close to
the viscous sublayer, and with figure 17, in the low log-layer, respectively.

A more physically oriented discussion points out the role of the buffer layer as the
effective engine of turbulent fluctuations in wall-bounded flows. This already emerges
from the standard approach in terms of single-point statistics, which describes the
buffer as the region where production exceeds dissipation, thereby implying that
turbulent kinetic energy is irradiated towards the remaining parts of the flow. The
more detailed scale-by-scale balance, see figure 15(a), confirms the above conclusion.
In the effective production, the turbulent transport Tc reduces the amount of scale
energy per unit time which is locally made available. Namely, it exactly corresponds



Energy cascade and spatial fluxes in wall turbulence 211

r/η
0 10 20 30 40 50

r/η
0 10 20 30 40 50

–0.30

–0.15

0

0.15

0.30

0

0.05

0.10

0.15

0.20

0.25

0 20 40

–0.2

0

0.2

Figure 17. As figure 9 but at (h − |Yc|)+ = 30 (upper buffer layer).

to the scale energy which is drained from the specific location to contribute to the
feeding of the adjacent regions. Concerning the effective dissipation Ee, the inset in
figure 15(b) shows that the spatial diffusion term Dc is not particularly significant
while in the detailed balance (figure 15a) the predominant term is the effective
production, i.e. the local production Π amended from the spatial transport Tc.

A peculiar aspect of the buffer layer is the turbulent transport across scales Tr ,
which changes its nature from same sign as the local production at small scales to
the opposite sign at large scales; in the figures, the sign of both Tr and Πe has been
changed for better readability of the plots. This behaviour should be interpreted in
the sense of a classical cascade of energy occurring in the small scales which turns
into a reverse cascade at large separations. Actually, the asymptotics of the turbulent
flux across scales (3.5), by linking the large-scale behaviour of Tr to the transport
term of turbulent kinetic energy, implies a positive limit (negative in figure 15 where
Tr and Πe are plotted with the opposite sign) as r increases, i.e. a reverse cascade. In
this respect, the different features of the buffer layer – namely the ability to provide
the excess of scale energy to the nearby regions by means of a spatial flux (i.e. its
divergence Tc), the reverse cascade occurring in the space of scales at large separations
(i.e. Tr ) and the turbulent component of the flux of kinetic energy, see (2.1) – appear
as strictly related aspects. Such processes may be conjectured as directly related to
the dynamics of the coherent structures which are required to built up Reynolds
stresses and present a definite cycle consisting of regeneration of relatively extended
structures with quasi-periodic breakdown to small-scale turbulence.

In more detail, in the low-buffer region Tr is substantially positive at every scale,
see −Tr in figure 16, a behaviour presumably related to the low- and high-speed
streaks which populate this area, Robinson (1991). Moving away from the wall
towards the log-layer, the small scales begin to follow the classical cascade with
energy flowing towards the dissipative range, while a tendency towards an inverse
cascade is definitely maintained at large scales; this is presumably the imprint of the
breakdown, regeneration and coalescence of the streamwise vortices, Hamilton et al.
(1995). On entering the log-layer, no substantial focusing of turbulent kinetic energy
occurs and the energy keeps cascading towards the dissipative range in the entire
range of separations.

6. Concluding remarks
Two of the most important results in turbulence theory concern the idealization

of the flow aimed, on the one hand, at the dynamics of the small scales and, on
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the other, at the description of the near-wall layer of wall-bounded flows. The two
theories are, in a sense, the complements of each other. The dual nature arises from
the fact that, in the first case, the description is given in the space of scales – the
separation r or, equivalently, the wavenumber – while in the other it is given in
physical space. The question is how they can be reconciled in the non-ideal case of
inhomogeneous/anisotropic flows at finite Reynolds number where an energy cascade
and spatial momentum transfer occur simultaneously and asymptotic conditions are
far from being reached. One should be able to address the dynamics of a given
scale by evaluating the amount of energy income due to local production and spatial
redistribution. We have used for this purpose an approach based on a generalized
form of the Kolmogorov equation, originally derived by Hill (2002), to address the
dynamics of wall-bounded turbulence as described by a low-Reynolds-number DNS
of turbulent channel flow.

In physical terms, the generalized Kolmogorov equation directs the attention to
the energy content of a given scale of turbulent motion as a function of the distance
from the wall. Two different kinds of scale energy fluxes are identified, one related
to the transport of scale energy in physical space, the other related to the transfer of
energy across the spectrum of turbulent scales. The former is the natural extension
of the classical flux of turbulent kinetic energy across the channel to a scale-by-
scale context. The other takes care of the different forms of energy transfer which
may occur in a complex turbulent flow, thus generalizing the concept of an energy
cascade in homogeneous-isotropic turbulence. A certain scale at a given position in
space receives turbulent energy by three different mechanisms: scale energy can be
intercepted from the spatial flux, it can be drained from the inter-scale transfer and,
finally, energy can also be generated locally by the interaction with the mean flow or
by possible external agencies. In steady conditions, the balance implies that the net
time rate of available scale energy should correspond to the local dissipation.

Each kind of scale-energy flux possesses two entirely different contributions: inertial
and diffusive. Correspondingly, the range of the associated independent variable is
split into subranges, dominated either by the diffusive or by the inertial component
of the respective energy flux.

Our results show that the decomposition of the channel in terms of viscous layer,
buffer region, log-layer and bulk region also maintains a well-defined meaning in
the context of a scale-by-scale budget. The buffer layer appears as the region where
production of scale energy is predominant and feeds the spatial flux towards adjacent
zones. The log-layer corresponds to the equilibrium layer where production and
dissipation balance, in the sense that, for each scale, energy is not received from nor
released to the wall-normal spatial flux. The spatial flux of scale energy is instead
crucial for turbulence sustainment in the bulk region. In fact, the excess production
in the buffer layer crosses the log-layer as an essentially constant spatial flux to
reach the bulk of the flow. In the space of scales, typically, the large-scale production
range is followed by a nearly classical transfer range, closed by diffusion at the local
dissipative scales. This description is particularly suited to the log-layer, for which the
production range almost entirely feeds the local cascade process in the same way as
for the homogeneous shear flow.

The existence of a coupled transfer of energy occurring simultaneously in physical
and in scale space has been anticipated by other authors. For instance Jimenez (1999),
following the attached eddy concept of Townsend (1956), discusses an energy transfer
diagram based on the assumed existence of a double structure for the turbulent field:
the attached eddies with size comparable with their distance from the wall and a
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Figure 18. (a) r-averaged balance according to equation (4.10): −−−, dissipation; �, sum
of all terms except dissipation for Y+

c = 100. (b) Residual of the r-averaged equation (4.10),
normalized by the local dissipation, vs. distance from the wall.

background, incoherent turbulence. The attached eddies would be responsible for an
inverse energy cascade from small eddies to larger ones, with the twofold effect of
moving energy to larger scales and away from the wall. The generalized Kolmogorov
equation used here offers a practicable way to measure the intensity of the different
energy fluxes and provides, we believe, a complete and formally precise description
of the detailed dynamics of turbulent fluctuations in the different regions of an
inhomogeneous turbulent flow.

Appendix. Statistical convergence
When dealing with the statistical description of complex turbulent fields the issue of

statistical convergence is always a crucial point. In the present case, the computational
demand for well-converged statistics is partially mitigated by the stationarity of the
field and by the homogeneity of the fluctuations with respect to translations in wall-
parallel directions. The field is sampled at a number N of instants of time ti and
averages of a generic quantity q are defined as

〈q(y)〉 =
1

N

N∑
i=1

1

Λx Λz

∫ Λx/2

−Λx/2

∫ Λz/2

−Λz/2

q(x, y, z, ti) dx dz. (A 1)

An estimate on the convergence of the statistics can be obtained by considering
the accuracy with which equation (4.10) is satisfied, see figure 18. From the numerical
data-base, all contributions are found to sum-up to zero within a small statistical error
Rs(r, Yc), whose magnitude is a measure of the statistical accuracy. As an example,
figure 18(a) shows by symbols the sum of all terms in equation (4.10) except the
contribution of the dissipation, which is separately displayed by the solid line. Their
difference corresponds to Rs(r, Ȳc) at location Ȳc = 100 where |Rs | is largest. For each
value of Yc, the local maximum of Rs in r-space, typically attained at large separation,
is plotted in figure 18(b) as a function of the distance from the wall. As shown, the
overall statistical convergence is achieved within an accuracy better than 4% of the
local dissipation.

Concerning the statistical significance of the results, the other relevant issue may
concern the sensitivity to the dimensions of the computational domain. By comparing
the results of our principal simulation (Λx = 4, Λz = 2) with those of a shorter run
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with Λx = 4π, Λz = 2π one can safely conclude that our main data set reproduces the
appropriate dynamics in precise quantitative terms.
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